Octal bus transceiver; 3-state; inverting

74HC/HCT640

FEATURES

- Octal bidirectional bus interface
- Inverting 3-state outputs
- Output capability: bus driver
- I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT640 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT640 are octal transceivers featuring inverting 3-state bus compatible outputs in both send and receive directions.

The "640" features an output enable (\overline{OE}) input for easy cascading and a send/receive (DIR) for direction control. \overline{OE} controls the outputs so that the buses are effectively isolated. The "640" is similar to the "245" but has inverting outputs.

QUICK REFERENCE DATA

GND = 0 V; $T_{amb} = 25 \text{ °C}$; $t_r = t_f = 6 \text{ ns}$

SYMBOL	PARAMETER	CONDITIONS	TYP	PICAL	UNIT	
STMBOL	PARAMETER	CONDITIONS	нс	нст		
t _{PHL} / t _{PLH}	propagation delay A_n to B_n ; B_n to A_n	C _L = 15 pF; V _{CC} = 5 V	9	9	ns	
CI	input capacitance		3.5	3.5	pF	
C _{I/O}	input/output capacitance		10	10	pF	
C _{PD}	power dissipation capacitance per transceiver	notes 1 and 2	35	35	pF	

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

 $P_D = C_{PD} \times V_{CC}^2 \times f_i + \Sigma (C_L \times V_{CC}^2 \times f_o)$ where:

 f_i = input frequency in MHz

 $f_o = output frequency in MHz$

 $\Sigma (C_L \times V_{CC}^2 \times f_o) = sum of outputs$

C_L = output load capacitance in pF

V_{CC} = supply voltage in V

2. For HC the condition is $V_I = GND$ to V_{CC} For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5$ V

ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

Octal bus transceiver; 3-state; inverting

74HC/HCT640

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: bus driver I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

SYMBOL	PARAMETER	T _{amb} (°C)								TEST CONDITIONS	
		74HC									
		+25			-40 to +85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.		(,,,	
t _{PHL} / t _{PLH}	propagation delay		30	90		115		135	ns	2.0	Fig.5
	A _n to B _n ; B _n to A _n		11 9	18 15		23 20		27 23		4.5 6.0	
t _{PZH} / t _{PZL}	$\begin{array}{l} 3\text{-state output enable time} \\ \overline{OE}, \text{ DIR to } A_n; \\ \overline{OE}, \text{ DIR to } B_n \end{array}$		44 16 13	150 30 26		190 38 33		225 45 38	ns	2.0 4.5 6.0	Fig.6
t _{PHZ} / t _{PLZ}	$\begin{array}{l} \mbox{3-state output disable time} \\ \hline \overline{OE}, \mbox{ DIR to } A_n; \\ \hline \overline{OE}, \mbox{ DIR to } B_n \end{array}$		50 18 14	150 30 26		190 38 33		225 45 38	ns	2.0 4.5 6.0	Fig.6
t _{THL} / t _{TLH}	output transition time		14 5 4	60 12 10		75 15 13		90 18 15	ns	2.0 4.5 6.0	Fig.5

Octal bus transceiver; 3-state; inverting

74HC/HCT640

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: bus driver I_{CC} category: MSI

Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
A _n	1.50
Bn	1.50
	1.50
DIR	0.90

AC CHARACTERISTICS FOR 74HCT

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

	PARAMETER	Т _{ать} (°С) 74НСТ								TEST CONDITIONS	
SYMBOL											
		+25			-40 to +85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.		(-)	
t _{PHL} / t _{PLH}	propagation delay A_n to B_n ; B_n to A_n		11	22		28		33	ns	4.5	Fig.5
t _{PZH} / t _{PZL}	$\begin{array}{l} \mbox{3-state output enable time} \\ \hline \overline{OE}, \mbox{ DIR to } A_n; \\ \hline \overline{OE}, \mbox{ DIR to } B_n \end{array}$		18	30		38		45	ns	4.5	Fig.6
t _{PHZ} / t _{PLZ}	$\begin{array}{l} \mbox{3-state output disable time} \\ \hline \overline{OE}, \mbox{ DIR to } A_n; \\ \hline \overline{OE}, \mbox{ DIR to } B_n \end{array}$		19	30		38		45	ns	4.5	Fig.6
t _{THL} / t _{TLH}	output transition time		5	12		15		18	ns	4.5	Fig.5